Skip to content

Atlas Feature-Driven Implementation Plan ​

Consolidated File Structure ​

Status Legend ​

  • βœ… Complete - Implementation finished and tested
  • 🚧 In Progress - Implementation actively being worked on
  • πŸ”„ Planned (Short-term) - Next items in the implementation queue
  • πŸ”² Planned (Long-term) - Designed but scheduled for later implementation

Feature Priority Legend ​

  • πŸ”΄ Primary Features - Core functionality that must be delivered first
  • 🟠 Secondary Features - Important functionality built on primary features
  • 🟒 Tertiary Features - Additional functionality that enhances the system
  • πŸ”΅ Future Features - Planned for future releases
atlas/                                        # ⚠️ DIRECTORY DOES NOT EXIST YET
β”œβ”€β”€ core/                                     # Core abstractions and primitives
β”‚   β”œβ”€β”€ schema/                               # Schema definitions & validation   πŸ”΄
β”‚   β”‚   β”œβ”€β”€ __init__.py                       # Package initialization           πŸ”²
β”‚   β”‚   β”œβ”€β”€ base.py                           # Base schema classes              πŸ”²
β”‚   β”‚   β”œβ”€β”€ version.py                        # Version tracking for schemas     πŸ”²
β”‚   β”‚   β”œβ”€β”€ buffer.py                         # Buffer schemas                   πŸ”²
β”‚   β”‚   β”œβ”€β”€ event.py                          # Event schemas                    πŸ”²
β”‚   β”‚   β”œβ”€β”€ state.py                          # State schemas                    πŸ”²
β”‚   β”‚   β”œβ”€β”€ command.py                        # Command schemas                  πŸ”²
β”‚   β”‚   β”œβ”€β”€ provider.py                       # Provider schemas                 πŸ”²
β”‚   β”‚   β”œβ”€β”€ document.py                       # Document schemas                 πŸ”²
β”‚   β”‚   β”œβ”€β”€ agent.py                          # Agent schemas                    πŸ”²
β”‚   β”‚   β”œβ”€β”€ task.py                           # Task schemas                     πŸ”²
β”‚   β”‚   β”œβ”€β”€ registry.py                       # Schema registry for discovery    πŸ”²
β”‚   β”‚   β”œβ”€β”€ factory.py                        # Schema factory utilities         πŸ”²
β”‚   β”‚   β”œβ”€β”€ migration.py                      # Schema version migration tools   πŸ”²
β”‚   β”‚   β”œβ”€β”€ validation.py                     # Cross-cutting validation rules   πŸ”²
β”‚   β”‚   β”œβ”€β”€ fields.py                         # Custom schema fields             πŸ”²
β”‚   β”‚   β”œβ”€β”€ serialization.py                  # Serialization helpers            πŸ”²
β”‚   β”‚   └── validators.py                     # Custom validators                πŸ”²
β”‚   β”œβ”€β”€ primitives/                           # Foundational protocols and types
β”‚   β”‚   β”œβ”€β”€ buffer/                           # Stream buffering system          πŸ”΄
β”‚   β”‚   β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ protocol.py                   # Buffer protocol definitions      πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ state.py                      # Buffer state enumerations        πŸ”²
β”‚   β”‚   β”‚   └── types.py                      # Buffer-related type definitions  πŸ”²
β”‚   β”‚   β”œβ”€β”€ commands/                         # Command system                   🟠
β”‚   β”‚   β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ protocol.py                   # Command protocol definitions     πŸ”²
β”‚   β”‚   β”‚   └── types.py                      # Command-related type definitions πŸ”²
β”‚   β”‚   β”œβ”€β”€ events/                           # Event system                     πŸ”΄
β”‚   β”‚   β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ protocol.py                   # Event protocol definitions       πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ types.py                      # Event-related type definitions   πŸ”²
β”‚   β”‚   β”‚   └── filter.py                     # Event filtering capabilities     πŸ”²
β”‚   β”‚   β”œβ”€β”€ perspective/                      # Perspective-shifting system      🟠
β”‚   β”‚   β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ protocol.py                   # Perspective protocol definitions πŸ”²
β”‚   β”‚   β”‚   └── types.py                      # Perspective-related definitions  πŸ”²
β”‚   β”‚   β”œβ”€β”€ registry/                         # Registration system              🟠
β”‚   β”‚   β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ protocol.py                   # Registry protocol definitions    πŸ”²
β”‚   β”‚   β”‚   └── types.py                      # Registry-related definitions     πŸ”²
β”‚   β”‚   β”œβ”€β”€ resources/                        # Resource management system       πŸ”΄
β”‚   β”‚   β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ protocol.py                   # Resource protocol definitions    πŸ”²
β”‚   β”‚   β”‚   └── types.py                      # Resource-related definitions     πŸ”²
β”‚   β”‚   β”œβ”€β”€ state/                            # State management system          πŸ”΄
β”‚   β”‚   β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ protocol.py                   # State protocol definitions       πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ container.py                  # State container protocol         πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ transition.py                 # State transition protocol        πŸ”²
β”‚   β”‚   β”‚   └── types.py                      # State-related type definitions   πŸ”²
β”‚   β”‚   └── transitions/                      # Transition management system     πŸ”΄
β”‚   β”‚       β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚       β”œβ”€β”€ protocol.py                   # Transition protocol definitions  πŸ”²
β”‚   β”‚       └── types.py                      # Transition-related definitions   πŸ”²
β”‚   β”œβ”€β”€ components/                           # NERV architectural components
β”‚   β”‚   β”œβ”€β”€ __init__.py                       # Package initialization           πŸ”²
β”‚   β”‚   β”œβ”€β”€ aspect_weaver.py                  # Aspect-oriented programming      πŸ”²
β”‚   β”‚   β”œβ”€β”€ container.py                      # Dependency injection container   πŸ”²
β”‚   β”‚   β”œβ”€β”€ diff_synchronizer.py              # State diffing and synchronizationπŸ”²
β”‚   β”‚   β”œβ”€β”€ effect_monad.py                   # Effect tracking and management   πŸ”²
β”‚   β”‚   β”œβ”€β”€ event_bus.py                      # Reactive event communication     πŸ”²
β”‚   β”‚   β”œβ”€β”€ perspective_aware.py              # Context-specific views           πŸ”²
β”‚   β”‚   β”œβ”€β”€ quantum_partitioner.py            # Parallel execution system        πŸ”²
β”‚   β”‚   β”œβ”€β”€ state_projector.py                # Efficient state evolution        πŸ”²
β”‚   β”‚   └── temporal_store.py                 # Temporal state tracking          πŸ”²
β”‚   β”œβ”€β”€ patterns/                             # Design patterns implementation
β”‚   β”‚   β”œβ”€β”€ __init__.py                       # Package initialization           πŸ”²
β”‚   β”‚   β”œβ”€β”€ command.py                        # Command pattern                  πŸ”²
β”‚   β”‚   β”œβ”€β”€ dependency_injection.py           # Dependency injection pattern     πŸ”²
β”‚   β”‚   β”œβ”€β”€ perspective.py                    # Perspective shifting pattern     πŸ”²
β”‚   β”‚   β”œβ”€β”€ pub_sub.py                        # Publish-subscribe pattern        πŸ”²
β”‚   β”‚   β”œβ”€β”€ reactive.py                       # Reactive programming pattern     πŸ”²
β”‚   β”‚   └── resource_management.py            # Resource management pattern      πŸ”²
β”‚   └── composites/                           # Composite architectural patterns
β”‚       β”œβ”€β”€ __init__.py                       # Package initialization           πŸ”²
β”‚       β”œβ”€β”€ adaptive_state_management.py      # Adaptive state management        πŸ”²
β”‚       β”œβ”€β”€ event_driven.py                   # Event-driven architecture        πŸ”²
β”‚       └── parallel_workflow_engine.py       # Dependency-based parallel exec   πŸ”²
β”œβ”€β”€ providers/                                # LLM provider implementations     πŸ”΄
β”‚   β”œβ”€β”€ services/                             # Provider service interfaces
β”‚   β”‚   β”œβ”€β”€ __init__.py                       # Package initialization           πŸ”²
β”‚   β”‚   β”œβ”€β”€ base.py                           # Service-enabled provider base    πŸ”²
β”‚   β”‚   β”œβ”€β”€ capability_registry.py            # Provider capability registry     πŸ”²
β”‚   β”‚   β”œβ”€β”€ selection.py                      # Provider selection strategies    πŸ”²
β”‚   β”‚   β”œβ”€β”€ group.py                          # Provider group implementation    πŸ”²
β”‚   β”‚   β”œβ”€β”€ streaming/                        # Streaming capabilities
β”‚   β”‚   β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ buffer.py                     # Provider streaming buffer        πŸ”²
β”‚   β”‚   β”‚   β”œβ”€β”€ control.py                    # Streaming control interface      πŸ”²
β”‚   β”‚   β”‚   └── metrics.py                    # Streaming performance metrics    πŸ”²
β”‚   β”‚   └── types/                            # Provider type definitions
β”‚   β”‚       β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚   β”‚       β”œβ”€β”€ streaming.py                  # Streaming response types         πŸ”²
β”‚   β”‚       └── options.py                    # Provider options types           πŸ”²
β”‚   └── implementations/                      # Specific provider implementations
β”‚       β”œβ”€β”€ anthropic.py                      # Anthropic provider               πŸ”²
β”‚       β”œβ”€β”€ openai.py                         # OpenAI provider                  πŸ”²
β”‚       └── ollama.py                         # Ollama provider                  πŸ”²
β”œβ”€β”€ agents/                                   # Agent system implementation      πŸ”΄
β”‚   β”œβ”€β”€ services/                             # Agent service interfaces
β”‚   β”‚   β”œβ”€β”€ base.py                           # Service-enabled agent base       πŸ”²
β”‚   β”‚   β”œβ”€β”€ controller.py                     # Agent controller implementation  πŸ”²
β”‚   β”‚   └── registry.py                       # Agent registry service           πŸ”²
β”‚   β”œβ”€β”€ messaging/                            # Agent messaging system
β”‚   β”‚   β”œβ”€β”€ message.py                        # Structured message implementationπŸ”²
β”‚   β”‚   └── routing.py                        # Message routing with EventBus    πŸ”²
β”‚   └── specialized/                          # Specialized agent implementations
β”‚       β”œβ”€β”€ task_aware_agent.py               # Task-aware agent implementation  πŸ”²
β”‚       └── tool_agent.py                     # Tool-enabled agent implementationπŸ”²
β”œβ”€β”€ knowledge/                                # Knowledge system implementation  πŸ”΄
β”‚   β”œβ”€β”€ services/                             # Knowledge service interfaces
β”‚   β”‚   β”œβ”€β”€ chunking.py                       # Document chunking system         πŸ”²
β”‚   β”‚   β”œβ”€β”€ embedding.py                      # Embedding service                πŸ”²
β”‚   β”‚   β”œβ”€β”€ retrieval.py                      # Retrieval service                πŸ”²
β”‚   β”‚   └── hybrid_search.py                  # Hybrid search implementation     πŸ”²
β”‚   └── persistence/                          # Storage implementation
β”‚       β”œβ”€β”€ storage.py                        # Storage abstraction              πŸ”²
β”‚       └── chromadb.py                       # ChromaDB adapter                 πŸ”²
β”œβ”€β”€ orchestration/                            # Workflow orchestration           🟠
β”‚   β”œβ”€β”€ workflow/                             # Workflow system
β”‚   β”‚   β”œβ”€β”€ engine.py                         # Workflow engine implementation   πŸ”²
β”‚   β”‚   β”œβ”€β”€ task.py                           # Task implementation              πŸ”²
β”‚   β”‚   └── dependency.py                     # Dependency management            πŸ”²
β”‚   └── parallel/                             # Parallel execution system
β”‚       β”œβ”€β”€ executor.py                       # Parallel executor implementation πŸ”²
β”‚       └── scheduler.py                      # Task scheduler implementation    πŸ”²
β”œβ”€β”€ cli/                                      # Command line interface           🟠
β”‚   β”œβ”€β”€ __init__.py                           # Package initialization           πŸ”²
β”‚   β”œβ”€β”€ config.py                             # Configuration utilities          πŸ”²
β”‚   β”œβ”€β”€ parser.py                             # Command-line argument parsing    πŸ”²
β”‚   └── textual/                              # Textual CLI components
β”‚       β”œβ”€β”€ __init__.py                       # Package initialization           πŸ”²
β”‚       β”œβ”€β”€ app.py                            # Main application class           πŸ”²
β”‚       β”œβ”€β”€ commands.py                       # Command execution system         πŸ”²
β”‚       β”œβ”€β”€ schema.py                         # Command schema definitions       πŸ”²
β”‚       β”œβ”€β”€ config.py                         # Configuration management         πŸ”²
β”‚       β”œβ”€β”€ screens/                          # Screen implementations
β”‚       β”‚   β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚       β”‚   β”œβ”€β”€ main.py                       # Main application screen          πŸ”²
β”‚       β”‚   β”œβ”€β”€ provider.py                   # Provider selection screen        πŸ”²
β”‚       β”‚   β”œβ”€β”€ ingest.py                     # Document ingestion screen        πŸ”²
β”‚       β”‚   └── tools.py                      # Tool management screen           πŸ”²
β”‚       └── widgets/                          # Custom widget components
β”‚           β”œβ”€β”€ __init__.py                   # Package initialization           πŸ”²
β”‚           β”œβ”€β”€ command_bar.py                # Command input bar                πŸ”²
β”‚           β”œβ”€β”€ conversation.py               # Message display area             πŸ”²
β”‚           β”œβ”€β”€ status.py                     # Status and metrics display       πŸ”²
β”‚           └── stream_controls.py            # Streaming control widgets        πŸ”²
└── examples/                                 # Example implementations
    β”œβ”€β”€ __init__.py                           # Package initialization           πŸ”²
    β”œβ”€β”€ 02_streaming_chat.py                  # Streaming chat example           πŸ”²
    β”œβ”€β”€ 04_multi_provider_routing.py          # Multi-provider routing example   πŸ”²
    β”œβ”€β”€ 08_agent_delegation.py                # Agent delegation example         πŸ”²
    β”œβ”€β”€ 12_knowledge_retrieval.py             # Knowledge retrieval example      πŸ”²
    β”œβ”€β”€ 15_workflow_execution.py              # Workflow execution example       πŸ”²
    └── 20_command_cli.py                     # Command CLI example              πŸ”²

CLEAN BREAK WITH VERTICAL FEATURE SLICES

This document outlines a revised implementation approach for Atlas that maintains the clean break architecture vision while focusing on delivering complete functional features through vertical slices. Rather than building the entire architecture layer by layer, we will implement the minimal necessary components of each layer needed to deliver specific features, allowing us to demonstrate functional value earlier and reduce implementation risk.

Current Status (May 23, 2025)

  • βœ… Moved existing implementation to atlas_legacy for clean break
  • πŸ”΄ ACTUAL STATE: No new code has been implemented in atlas/ directory yet
  • πŸ”„ Need to create initial atlas directory structure
  • πŸ”„ Need to implement buffer protocol and types
  • πŸ”„ Need to implement event system protocols
  • πŸ”„ Need to implement state container protocols
  • πŸ”² Planning to shift from horizontal layer implementation to vertical feature slices
  • πŸ”² Will prioritize core services required for streaming chat functionality
  • πŸ”² Will implement event system components for streaming support
  • πŸ”² Will add schema validation with Marshmallow for critical data structures

Status Legend ​

  • βœ… Complete - Implementation finished and tested
  • 🚧 In Progress - Implementation actively being worked on
  • πŸ”„ Planned (Short-term) - Next items in the implementation queue
  • πŸ”² Planned (Long-term) - Designed but scheduled for later implementation

Feature Priority Legend ​

  • πŸ”΄ Primary Features - Core functionality that must be delivered first
  • 🟠 Secondary Features - Important functionality built on primary features
  • 🟒 Tertiary Features - Additional functionality that enhances the system
  • πŸ”΅ Future Features - Planned for future releases

1. Feature-Driven Vertical Slices ​

Rather than building complete horizontal layers of the architecture, we are reorganizing our implementation strategy around vertical feature slices that deliver functional value while maintaining architectural integrity.

Each feature slice:

  1. Implements the minimum necessary components from each architecture layer
  2. Delivers complete end-to-end functionality that users can test and validate
  3. Follows the clean break architecture principles within its scope
  4. Enables incremental adoption and testing of the architecture
  5. Includes schema validation (Marshmallow) for all critical data structures
  6. Leverages appropriate third-party libraries for its specific functionality

1.1 Feature Slice Diagram ​

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        FEATURE SLICE ARCHITECTURE                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚
β”‚ Streamingβ”‚ β”‚  Agent   β”‚ β”‚Knowledge β”‚ β”‚  Multi-  β”‚ β”‚ Workflow β”‚ β”‚ Command  β”‚
β”‚   Chat   β”‚ β”‚Delegationβ”‚ β”‚Retrieval β”‚ β”‚ Provider β”‚ β”‚Execution β”‚ β”‚   CLI    β”‚
β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚ Routing  β”‚ β”‚          β”‚ β”‚          β”‚
β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜
    ↑│↓          ↑│↓          ↑│↓          ↑│↓          ↑│↓          ↑│↓
β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”
β”‚Componentsβ”‚ β”‚Componentsβ”‚ β”‚Componentsβ”‚ β”‚Componentsβ”‚ β”‚Componentsβ”‚ β”‚Componentsβ”‚
β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚
β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜
    ↑│↓          ↑│↓          ↑│↓          ↑│↓          ↑│↓          ↑│↓
β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”
β”‚ Services β”‚ β”‚ Services β”‚ β”‚ Services β”‚ β”‚ Services β”‚ β”‚ Services β”‚ β”‚ Services β”‚
β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚ β”‚          β”‚
β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜
    ↑│↓          ↑│↓          ↑│↓          ↑│↓          ↑│↓          ↑│↓
β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”
β”‚   NERV   β”‚ β”‚   NERV   β”‚ β”‚   NERV   β”‚ β”‚   NERV   β”‚ β”‚   NERV   β”‚ β”‚   NERV   β”‚
β”‚Componentsβ”‚ β”‚Componentsβ”‚ β”‚Componentsβ”‚ β”‚Componentsβ”‚ β”‚Componentsβ”‚ β”‚Componentsβ”‚
β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜
    ↑│↓          ↑│↓          ↑│↓          ↑│↓          ↑│↓          ↑│↓
β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”
β”‚  Inner   β”‚ β”‚  Inner   β”‚ β”‚  Inner   β”‚ β”‚  Inner   β”‚ β”‚  Inner   β”‚ β”‚  Inner   β”‚
β”‚ Universe β”‚ β”‚ Universe β”‚ β”‚ Universe β”‚ β”‚ Universe β”‚ β”‚ Universe β”‚ β”‚ Universe β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

1.2 Schema Layer and Third-Party Integration ​

The Schema Layer is a foundational component that runs throughout all feature slices, providing validation, serialization, and documentation through Marshmallow schemas. Each feature slice integrates specific third-party libraries to leverage battle-tested implementations:

Feature SliceMarshmallow SchemasThird-Party Libraries
Streaming ChatStreamingResponseSchema: Validates streaming responses with detailed fields
TokenSchema: Polymorphic schema hierarchy for different token types
EventSchema: Validates event bus communications
BufferSchema: Validates buffer configuration and states
StateContainerSchema: Validates immutable state containers
Blinker: Event subscription and publication for reactive communication
Pyrsistent: Immutable data structures for thread-safe state management
Effect: Side effect tracking for testable streaming operations
Marshmallow: Schema validation for data structures
Agent DelegationAgentSchema: Validates agent configuration and capabilities
MessageSchema: Validates inter-agent message structure
TaskSchema: Validates agent task definitions and state
ControllerSchema: Validates controller state and routing
Eventsourcing: Temporal state tracking with event-sourcing pattern
Blinker: Agent message publication and subscription
Pyrsistent: Immutable agent state representation
DiffSync: State synchronization between agent components
Knowledge RetrievalDocumentSchema: Validates document structure and metadata
ChunkSchema: Validates document chunks with positional data
EmbeddingSchema: Validates vector embeddings and models
QuerySchema: Validates search queries and parameters
Marshmallow: Schema-based data transformations for perspectives
AspectLib: Cross-cutting concerns management for retrieval pipeline
Pyrsistent: Immutable document representation
Dependency Injector: Component wiring for retrieval services
Multi-Provider RoutingProviderSchema: Validates provider configuration
CapabilitySchema: Validates provider capabilities and features
RoutingSchema: Validates routing strategies and rules
ModelSchema: Validates model specifications and parameters
Dependency Injector: Container-based provider registration and resolution
Effect: Controlled side effects for provider operations
DiffSync: Provider state reconciliation
Marshmallow: Schema-based provider capability validation
Workflow ExecutionWorkflowSchema: Validates workflow structure and stages
TaskSchema: Validates workflow tasks with dependencies
DependencySchema: Validates task dependencies and ordering
ResourceSchema: Validates resource requirements and constraints
TaskMap: Dependency-based parallel execution of workflow tasks
Blinker: Event-driven coordination between workflow tasks
Effect: Side effect management in workflow execution
Pyrsistent: Immutable workflow definitions and state
Command CLICommandSchema: Validates command structure and parameters
ParameterSchema: Validates command parameters and type definitions
ResultSchema: Validates command results and formatting
ViewSchema: Validates UI presentation rules
Marshmallow: Command parameter validation and serialization
Dependency Injector: Command dependency resolution and lookup
AspectLib: Cross-cutting command concerns like logging and authorization
Effect: Command execution effect management

The Schema Layer provides consistent patterns for:

  1. Validation: Input/output validation across all components
  2. Serialization: Consistent serialization for persistence and transport
  3. Documentation: Auto-generated API documentation from schema definitions
  4. Schema Evolution: Version-aware schema migration capabilities
  5. Cross-Feature Integration: Common schema patterns for interoperability

1.3 Key Feature Slices ​

We have identified six key feature slices that will drive our implementation:

  1. Streaming Chat πŸ”΄

    • Real-time streaming conversation with LLM providers
    • Includes provider interaction, streaming buffer, and response parsing
    • Demonstrates event-driven architecture and buffer system
  2. Agent Delegation πŸ”΄

    • Task delegation between multiple specialized agents
    • Includes agent messaging, state tracking, and task coordination
    • Demonstrates event-driven communication and state management
  3. Knowledge Retrieval πŸ”΄

    • Document chunking, embedding, and semantic search
    • Includes vector storage, hybrid search, and context integration
    • Demonstrates persistence layer and state projection
  4. Multi-Provider Routing 🟠

    • Intelligent routing between different LLM providers
    • Includes capability matching, fallback strategies, and cost optimization
    • Demonstrates registry pattern and effect tracking
  5. Workflow Execution 🟠

    • Complex multi-step workflow orchestration
    • Includes parallel execution, dependency management, and error handling
    • Demonstrates quantum partitioning and reactive event mesh
  6. Command CLI 🟠

    • Textual-based command-line interface
    • Includes command parsing, execution, and response formatting
    • Demonstrates command pattern and perspective shifting

2. Feature Slice 1: Streaming Chat ​

2.1 Feature Overview ​

Streaming Chat enables real-time, token-by-token streaming of LLM responses to provide an interactive chat experience. This is our highest priority feature because it:

  • Provides immediate user value
  • Demonstrates key architectural patterns
  • Establishes patterns for provider integration
  • Enables testing of core services (event, buffer, state)

2.2 Implementation Status ​

  • πŸ”„ Defining buffer protocol and types
  • πŸ”„ Defining event primitives and protocols
  • πŸ”„ Defining state container protocols
  • πŸ”„ Designing event bus interface
  • πŸ”„ Creating streaming response model
  • πŸ”„ Planning buffer service implementation
  • πŸ”„ Designing service-enabled provider interface
  • πŸ”² Implementing buffer service
  • πŸ”² Implementing event system
  • πŸ”² Implementing state container
  • πŸ”² Implementing provider streaming capabilities
  • πŸ”² Building streaming chat example

2.3 Implementation Components ​

The Streaming Chat feature slice implements the following components:

Core Type System Components ​

  1. Event Types:

    • EventT, EventT_co - Generic event type variables with variance control
    • EventIdT - Unique identifier for events
    • SourceT - Event source identifier type
    • EventSubscriberT - Event subscriber protocol
    • EventFilterT - Event filtering predicate type
    • EventHandlerT - Event handler callable type
    • EventMetadata - Event metadata tracking
  2. Buffer Types:

    • TokenT, TokenT_co, TokenT_contra - Token type variables with variance
    • BufferStateT - Buffer state enumeration
    • FlowControlT - Flow control protocol
    • BufferCapacityT - Buffer capacity configuration
    • BufferError - Buffer operation error types
  3. State Types:

    • StateT, StateT_co, StateT_contra - State type variables with variance
    • VersionT - State version identifier
    • StateIdT - Unique state identifier
    • StateTransitionT - State transition type
    • StateValidatorT - State validation protocol
    • StateProjectionT - State projection protocol
  4. Streaming Types:

    • StreamingResponseT - Streaming response type
    • ContentT - Content type for accumulation
    • ProviderT - Provider type for streaming
    • ResponseMetadataT - Response metadata type
    • StreamErrorT - Streaming error types

Implementation Components ​

  1. EventBus: Real-time event communication

    • Event publication and subscription
    • Event filtering and routing
    • Thread-safe operation
    • Event context tracking
    • Middleware pipeline for event transformation
    • Completion and error handling
    • Library: Blinker for signal-based event dispatch
    • Schema Validation: EventSchema with Marshmallow validation
  2. Buffer Service: Stream token management

    • Thread-safe token queue
    • Backpressure control
    • Flow rate management
    • Token accumulation
    • Buffer overflow protection
    • Multi-consumer support
    • Library: Pyrsistent for immutable buffer state
    • Schema Validation: BufferSchema with capacity and configuration validation
  3. State Container: Streaming response state

    • Current response state
    • Token history tracking
    • Metadata tracking
    • State transitions
    • Versioning support
    • State projections
    • Libraries: Pyrsistent for immutable state, Eventsourcing for history
    • Schema Validation: StateSchema with transition validation
  4. Provider Adapter: LLM integration

    • Provider-specific adapters
    • Streaming support
    • Error handling
    • Token parsing
    • Completion detection
    • Performance monitoring
    • Library: Effect for provider operation side effects
    • Schema Validation: ProviderSchema with capability validation

2.4 Implementation Roadmap ​

Foundation: Protocol Definitions
  • May 20-21, 2025 πŸ”„
  • Define buffer, event, and state protocols
  • Create type definitions and enumerations
  • Design protocol interactions
  • Document protocol behaviors
  • Implement protocol validation utilities
Core Service Implementation
  • May 21-22, 2025 πŸ”²
  • Implement EventBus using Blinker
  • Create Buffer service with flow control
  • Build state container with versioning
  • Implement thread safety mechanisms
  • Add event middleware pipeline
Streaming Provider Implementation
  • May 22-23, 2025 πŸ”²
  • Implement ServiceEnabledProvider with EventBus
  • Create provider-specific streaming commands
  • Build streaming buffer adapter for providers
  • Add provider event publication
  • Implement token accumulation
Provider Implementations & Example
  • May 23-24, 2025 πŸ”²
  • Implement Anthropic provider with streaming
  • Create OpenAI provider with streaming
  • Build Ollama provider with streaming
  • Create streaming chat example
  • Implement streaming chat CLI interface

3. Feature Slice 2: Agent Delegation ​

3.1 Feature Overview ​

Agent Delegation enables task delegation and coordination between specialized agents working together to solve complex problems. This feature:

  • Showcases agent collaboration capabilities
  • Establishes message passing patterns
  • Demonstrates stateful agent behavior
  • Enables complex task decomposition

3.2 Implementation Status ​

  • πŸ”„ Defining agent messaging protocols
  • πŸ”„ Creating agent state model
  • πŸ”² Implementing controller agent architecture
  • πŸ”² Building message routing system
  • πŸ”² Designing task delegation patterns
  • πŸ”² Creating specialized agent implementations
  • πŸ”² Building agent delegation example

3.3 Implementation Components ​

The Agent Delegation feature slice implements the following components:

Core Type System Components ​

  1. Agent Types:

    • AgentT, AgentT_co - Generic agent type variables with variance
    • AgentIdT - Unique agent identifier
    • AgentRoleT - Agent role enumeration
    • AgentStateT - Agent state type
    • AgentCapabilityT - Agent capability type
    • AgentConfigT - Agent configuration type
    • AgentErrorT - Agent error types
  2. Message Types:

    • MessageT - Generic message type
    • MessageIdT - Unique message identifier
    • MessageContentT - Message content type
    • MessageDirectionT - Message direction enumeration
    • MessagePriorityT - Message priority enumeration
    • MessageStatusT - Message status enumeration
    • MessageRoutingInfoT - Routing information type
  3. Task Types:

    • TaskT - Generic task type
    • TaskIdT - Unique task identifier
    • TaskStatusT - Task status enumeration
    • TaskPriorityT - Task priority enumeration
    • TaskResultT - Task result type
    • TaskDependencyT - Task dependency type
    • TaskErrorT - Task error types
  4. Controller Types:

    • ControllerT - Controller type
    • ControllerStateT - Controller state type
    • ControllerStrategyT - Controller strategy protocol
    • AgentRegistryT - Agent registry type
    • ControllerErrorT - Controller error types

Implementation Components ​

  1. TemporalStore: Agent state tracking

    • Version history management
    • State transitions
    • Checkpoint capabilities
    • State serialization
    • Temporal queries
    • Diff-based state updates
    • Library: Eventsourcing for temporal event storage
    • Schema Validation: AgentSchema with Marshmallow validation
  2. Message System: Agent communication

    • Structured message format
    • Message routing
    • Delivery confirmation
    • Message prioritization
    • Message filtering
    • Serialization support
    • Library: Blinker for message publication/subscription
    • Schema Validation: MessageSchema with content validation
  3. Controller: Coordination and orchestration

    • Agent registration
    • Task delegation
    • Progress tracking
    • Error handling
    • Resource management
    • Strategy selection
    • Libraries: Dependency Injector for agent wiring, DiffSync for state synchronization
    • Schema Validation: ControllerSchema with delegation rules
  4. Agent Registry: Agent discovery

    • Agent capability matching
    • Agent availability tracking
    • Dynamic agent registration
    • Agent metadata storage
    • Version management
    • Health monitoring
    • Library: Dependency Injector for registry container
    • Schema Validation: RegistrySchema with capability matching rules

3.4 Implementation Roadmap ​

Foundation: Agent State & Messaging
  • May 23-24, 2025 πŸ”„
  • Implement TemporalStore for agent state tracking
  • Create message model with serialization
  • Implement message routing system
  • Add agent state transition management
  • Create agent event publication
Controller & Delegation
  • May 24-25, 2025 πŸ”²
  • Implement controller agent architecture
  • Create task delegation patterns
  • Build message passing protocols
  • Implement task tracking with state
  • Add agent registry for discovery
Specialized Agents & Example
  • May 25-26, 2025 πŸ”²
  • Implement task-aware agent
  • Create tool-enabled agent
  • Build knowledge agent
  • Implement agent delegation example
  • Create agent delegation CLI interface

4. Feature Slice 3: Knowledge Retrieval ​

4.1 Feature Overview ​

Knowledge Retrieval enables semantic search and retrieval of documents to enhance LLM responses with relevant information. This feature:

  • Provides critical context augmentation
  • Demonstrates persistence layer integration
  • Showcases buffer system for search results
  • Establishes document processing patterns

4.2 Implementation Status ​

  • πŸ”„ Defining chunking and embedding protocols
  • πŸ”„ Creating retrieval service interface
  • πŸ”² Implementing document chunking strategies
  • πŸ”² Building embedding service
  • πŸ”² Designing vector store integration
  • πŸ”² Creating hybrid search implementation
  • πŸ”² Building knowledge retrieval example

4.3 Implementation Components ​

The Knowledge Retrieval feature slice implements the following components:

Core Type System Components ​

  1. Document Types:

    • DocumentT - Generic document type
    • DocumentIdT - Unique document identifier
    • DocumentContentT - Document content type
    • DocumentMetadataT - Document metadata type
    • ChunkT - Document chunk type
    • ChunkIdT - Unique chunk identifier
    • ChunkMetadataT - Chunk metadata type
  2. Embedding Types:

    • EmbeddingT - Generic embedding type
    • EmbeddingIdT - Unique embedding identifier
    • EmbeddingModelT - Embedding model type
    • EmbeddingConfigT - Embedding configuration type
    • EmbeddingVectorT - Vector representation type
    • EmbeddingErrorT - Embedding error types
  3. Query Types:

    • QueryT - Generic query type
    • QueryIdT - Unique query identifier
    • QueryResultT - Query result type
    • QueryParamsT - Query parameters type
    • SimilarityMeasureT - Similarity measure enumeration
    • RankingStrategyT - Result ranking strategy protocol
    • QueryErrorT - Query error types
  4. Storage Types:

    • StorageT - Generic storage type
    • StorageIdT - Unique storage identifier
    • StorageConfigT - Storage configuration type
    • PersistenceStrategyT - Persistence strategy protocol
    • StorageMetadataT - Storage metadata type
    • StorageErrorT - Storage error types

Implementation Components ​

  1. PerspectiveAware: Context-specific views

    • Schema-based transformations
    • Context-aware projections
    • View validation
    • Data filtering
    • Schema generation
    • Serialization support
    • Library: Marshmallow for schema-based transformations
    • Schema Validation: DocumentSchema with perspective rules
  2. Chunking Service: Document processing

    • Semantic chunking
    • Size-based chunking
    • Recursive chunking
    • Overlap management
    • Metadata extraction
    • Content cleaning
    • Library: AspectLib for cross-cutting document processing concerns
    • Schema Validation: ChunkSchema with boundary validation
  3. Embedding Service: Vector generation

    • Multiple model support
    • Batch embedding
    • Caching strategy
    • Dimensionality handling
    • Error recovery
    • Performance optimization
    • Library: Effect for embedding operation side effects
    • Schema Validation: EmbeddingSchema with vector validation
  4. Vector Store: Persistence layer

    • ChromaDB integration
    • Vector storage
    • Metadata management
    • Query optimization
    • Index management
    • Collection handling
    • Library: Dependency Injector for store component wiring
    • Schema Validation: StorageSchema with configuration validation

4.4 Implementation Roadmap ​

Foundation: Document Processing
  • May 26-27, 2025 πŸ”„
  • Implement document chunking strategies
  • Create embedding service with providers
  • Build resource management for storage
  • Add event publication for processing steps
  • Implement resource cleanup
Vector Store & Retrieval
  • May 27-28, 2025 πŸ”²
  • Implement ChromaDB adapter with persistence
  • Create vector search capabilities
  • Build metadata filtering
  • Implement result ranking algorithms
  • Add search result buffering
Hybrid Search & Example
  • May 28-29, 2025 πŸ”²
  • Implement hybrid search (vector + keyword)
  • Create context enrichment pipeline
  • Build document tracking with versioning
  • Implement knowledge retrieval example
  • Create retrieval CLI interface

5. Feature Slice 4: Multi-Provider Routing ​

5.1 Feature Overview ​

Multi-Provider Routing enables intelligent selection and fallback between different LLM providers based on capabilities, performance, and cost. This feature:

  • Optimizes provider selection
  • Demonstrates registry pattern
  • Showcases capability matching
  • Enables cost optimization

5.2 Implementation Status ​

  • πŸ”„ Defining provider service interfaces
  • πŸ”„ Creating capability registry protocols
  • πŸ”² Implementing provider registry
  • πŸ”² Building capability-based selection
  • πŸ”² Designing fallback strategies
  • πŸ”² Creating provider group implementation
  • πŸ”² Building multi-provider routing example

5.3 Implementation Components ​

  1. Container: Dependency injection framework

    • Service registration
    • Component resolution
    • Lifecycle management
    • Factory patterns
    • Resource pooling
    • Library: Dependency Injector for container implementation
    • Schema Validation: ContainerSchema with dependency rules
  2. Provider Registry: Provider discovery and selection

    • Provider registration
    • Capability matching
    • Version management
    • Health monitoring
    • Metadata management
    • Library: Dependency Injector for registry container
    • Schema Validation: ProviderSchema with capability validation
  3. Routing Strategies: Provider selection algorithms

    • Cost-based routing
    • Capability-based routing
    • Performance-based routing
    • Availability-based routing
    • Hybrid routing strategies
    • Library: Effect for routing operation side effects
    • Schema Validation: RouteSchema with strategy validation
  4. Provider Group: Multi-provider management

    • Fallback handling
    • Parallel execution
    • Result aggregation
    • Error recovery
    • Provider coordination
    • Library: DiffSync for provider state synchronization
    • Schema Validation: ProviderGroupSchema with collective rules

5.4 Implementation Roadmap ​

Foundation: Registry & Commands
  • May 29-30, 2025 πŸ”²
  • Implement Container for dependency management
  • Create service registry with discovery
  • Build command pattern implementation
  • Add capability registry system
  • Implement provider factory
Provider Selection & Grouping
  • May 30-31, 2025 πŸ”²
  • Implement provider capability matching
  • Create cost optimization strategies
  • Build priority-based selection
  • Implement provider group with fallback
  • Add parallel execution for providers
Routing Strategies & Example
  • May 31 - June 1, 2025 πŸ”²
  • Implement adaptive routing strategies
  • Create performance tracking
  • Build provider health monitoring
  • Implement multi-provider routing example
  • Create provider selection CLI interface

6. Feature Slice 5: Workflow Execution ​

6.1 Feature Overview ​

Workflow Execution enables complex multi-step workflows with dependency management, parallel execution, and error handling. This feature:

  • Enables sophisticated process orchestration
  • Demonstrates quantum partitioning
  • Showcases reactive event mesh
  • Establishes workflow patterns

6.2 Implementation Status ​

  • πŸ”„ Defining workflow primitives
  • πŸ”„ Creating task execution protocols
  • πŸ”² Implementing workflow engine
  • πŸ”² Building dependency management
  • πŸ”² Designing parallel execution
  • πŸ”² Creating workflow monitoring
  • πŸ”² Building workflow execution example

6.3 Implementation Components ​

  1. QuantumPartitioner: Parallel execution engine

    • Task dependency resolution
    • Parallel execution strategy
    • Resource-aware scheduling
    • Task partitioning
    • Work distribution
    • Library: TaskMap for dependency-based execution
    • Schema Validation: TaskSchema with dependency rules
  2. Workflow Engine: Process orchestration

    • Workflow definition
    • State tracking
    • Error handling
    • Event publication
    • Resource management
    • Library: Blinker for workflow event coordination
    • Schema Validation: WorkflowSchema with execution rules
  3. Dependency Manager: Task relationship handling

    • Dependency graph creation
    • Cycle detection
    • Dependency resolution
    • Constraint validation
    • Dependency monitoring
    • Library: TaskMap for DAG-based dependency resolution
    • Schema Validation: DependencySchema with relationship rules
  4. Execution Monitor: Performance tracking

    • Execution metrics
    • Bottleneck detection
    • Resource monitoring
    • Timeline visualization
    • Historical tracking
    • Library: Eventsourcing for execution history tracking
    • Schema Validation: MonitorSchema with metrics validation

6.4 Implementation Roadmap ​

Foundation: Quantum Partitioning
  • June 1-2, 2025 πŸ”²
  • Implement QuantumPartitioner with TaskMap
  • Create parallel execution strategies
  • Build dependency tracking system
  • Add task scheduling mechanisms
  • Implement result aggregation
Workflow Engine
  • June 2-3, 2025 πŸ”²
  • Implement workflow engine with parallel execution
  • Create workflow state tracking
  • Build error handling and recovery
  • Add workflow event publication
  • Implement workflow monitoring
Workflow Definition & Example
  • June 3-4, 2025 πŸ”²
  • Implement workflow definition DSL
  • Create visual workflow representation
  • Build workflow history tracking
  • Implement workflow execution example
  • Create workflow CLI interface

7. Feature Slice 6: Command CLI ​

7.1 Feature Overview ​

Command CLI provides a Textual-based rich terminal interface for interacting with Atlas. This feature:

  • Delivers user-friendly interface
  • Demonstrates command pattern
  • Showcases perspective shifting
  • Establishes UI patterns

7.2 Implementation Status ​

  • πŸ”„ Defining command primitives
  • πŸ”„ Creating CLI interface protocols
  • πŸ”² Implementing command execution
  • πŸ”² Building Textual UI components
  • πŸ”² Designing perspective-based views
  • πŸ”² Creating configuration management
  • πŸ”² Building command CLI example

7.3 Implementation Components ​

  1. PerspectiveAware: Context-specific views

    • Schema-based transformations
    • View selection
    • Data filtering
    • Presentation rules
    • View transitions
    • Library: Marshmallow for schema-based transformations
    • Schema Validation: ViewSchema with presentation rules
  2. Command System: Command execution framework

    • Command discovery
    • Parameter validation
    • Command execution
    • Result formatting
    • Error handling
    • Library: Dependency Injector for command resolution
    • Schema Validation: CommandSchema with parameter rules
  3. CLI UI Components: Rich terminal interface

    • Screen management
    • Widget implementation
    • Event handling
    • Rendering pipeline
    • User interaction
    • Library: AspectLib for cross-cutting UI concerns
    • Schema Validation: ComponentSchema with UI constraints
  4. Configuration System: User settings management

    • Configuration storage
    • Schema validation
    • Default handling
    • Update notification
    • Migration support
    • Library: Marshmallow for config serialization and validation
    • Schema Validation: ConfigSchema with setting rules

7.4 Implementation Roadmap ​

Foundation: Command & Perspective
  • June 4-5, 2025 πŸ”²
  • Implement PerspectiveAware for context views
  • Create command pattern implementation
  • Build command schema with validation
  • Add command execution tracking
  • Implement command history
Textual UI Components
  • June 5-6, 2025 πŸ”²
  • Implement Textual application with EventBus
  • Create conversation view with streaming
  • Build command bar implementation
  • Add screen management
  • Implement widget components
CLI Integration & Example
  • June 6-7, 2025 πŸ”²
  • Implement configuration persistence
  • Create command discovery
  • Build help system and documentation
  • Implement command CLI example
  • Create comprehensive CLI user guide

8. Key Architectural Principles ​

Despite shifting to a feature-driven approach, we maintain these core architectural principles from the clean break design:

  1. Protocol-First Design: All interfaces are defined as protocols before implementation
  2. Type-Safe Foundations: Strong typing throughout with centralized type variable system
  3. Schema Validation: All data structures validate with Marshmallow schemas
  4. Reactive Event Mesh: Components communicate through reactive event subscription via Blinker
  5. Temporal Awareness: State history and versioning maintained via Eventsourcing
  6. Explicit Effect Tracking: Side effects are captured and controlled via Effect
  7. Immutable State: Efficient immutable state transformations via Pyrsistent
  8. Perspective Shifting: Different contexts have appropriate views of the same data via Marshmallow
  9. Quantum Partitioning: Complex tasks are decomposed for parallel execution via TaskMap
  10. State Synchronization: Efficient reconciliation of state changes via DiffSync
  11. Aspect-Oriented Programming: Cross-cutting concerns handled via AspectLib
  12. Dependency Management: Component wiring and lifecycle via Dependency Injector
  13. Flat Abstraction Hierarchy: Core abstractions exist at the same conceptual level without artificial nesting
  14. Composable Architecture: Higher-level components built from compositions of simpler patterns

9. Implementation Timeline ​

Phase 1: Streaming Chat & Agent Delegation
  • May 20-26, 2025 🚧
  • Implement streaming chat feature slice
  • Build agent delegation feature slice
  • Create examples demonstrating both features
  • Implement core services: event, buffer, state
  • Core components: EventBus, StateProjector
Phase 2: Knowledge Retrieval & Provider Routing
  • May 26 - June 1, 2025 πŸ”„
  • Implement knowledge retrieval feature slice
  • Build multi-provider routing feature slice
  • Create examples demonstrating both features
  • Implement core services: registry, resources
  • Core components: TemporalStore, Container
Phase 3: Workflow & CLI
  • June 1-7, 2025 πŸ”²
  • Implement workflow execution feature slice
  • Build command CLI feature slice
  • Create examples demonstrating both features
  • Implement core services: commands, perspective
  • Core components: QuantumPartitioner, PerspectiveAware
Phase 4: Integration & Polish
  • June 7-14, 2025 πŸ”²
  • Implement system-level integration
  • Complete documentation
  • Add comprehensive examples
  • Final polish and cleanup
  • Full performance optimization

10. Key Benefits of Feature-Driven Approach ​

  1. Functional Value Earlier: Users can see and test working features sooner
  2. Reduced Implementation Risk: Early validation of architectural patterns
  3. Better Prioritization: Resources focused on most important features first
  4. Incremental Architecture Adoption: Clean break principles applied incrementally
  5. Natural Integration Points: Features align with user expectations
  6. Parallelization Opportunity: Multiple vertical slices can be developed concurrently
  7. Easier Progress Tracking: Feature completion provides clear metrics

11. Schema Layer and Third-Party Integration ​

Each feature slice integrates specific third-party libraries and includes comprehensive schema validation through Marshmallow:

11.1 Feature-Library Integration Summary ​

Feature SlicePrimary LibrariesKey Capabilities
Streaming ChatBlinker, Pyrsistent, EffectEvent communication, immutable state, side effect tracking
Agent DelegationEventsourcing, Blinker, DiffSyncTemporal state, messaging, synchronization
Knowledge RetrievalMarshmallow, AspectLib, Dependency InjectorSchema transformation, cross-cutting concerns, service discovery
Multi-Provider RoutingDependency Injector, Effect, DiffSyncContainer management, provider effects, state sync
Workflow ExecutionTaskMap, Blinker, PyrsistentParallel execution, event coordination, immutable workflows
Command CLIMarshmallow, Dependency Injector, AspectLibCommand validation, service resolution, cross-cutting extensions

11.2 Schema Design Approach ​

Marshmallow schemas provide unified validation, serialization, and documentation with:

  • Input/Output Validation: Type and structure validation
  • Data Transformation: Format conversion and perspective views
  • Documentation: Auto-generated API documentation
  • Version Management: Schema evolution and migration
  • Composition: Complex schemas through inheritance and nesting
  • Cross-Slice Integration: Consistent interoperability patterns

11.3 Library Integration Strategy by Feature Slice ​

Each vertical feature slice integrates the appropriate third-party libraries to deliver its specific functionality:

Streaming Chat Feature Libraries ​

  1. Blinker Integration for EventBus:

    • Implements reactive event communication patterns
    • Uses Signal objects with weak references for subscribers
    • Creates thread-safe event publication with locking strategies
    • Implements middleware pipeline for event transformation
    • Provides bounded event history for debugging
    • Performance optimizations:
      • Partitioned signals for high-volume event types
      • Optimized event dispatch for frequently triggered events
      • Weak reference management to prevent memory leaks
  2. Marshmallow Integration for Streaming Schemas:

    • Creates StreamingResponseSchema for strict validation
    • Implements TokenSchema hierarchy with polymorphic deserialization
    • Provides ResponseMetadataSchema for tracking metrics
    • Enables schema-based serialization for persistence
    • Performance optimizations:
      • Schema instance caching for repeated validations
      • Partial serialization for streaming content
      • Lazy field resolution for complex objects
  3. Pyrsistent Integration for Immutable State:

    • Uses PRecord for immutable state representation
    • Implements structural sharing for efficient updates
    • Creates delta tracking for state changes
    • Provides thread-safe immutable state handling
    • Performance optimizations:
      • Focused record updates to minimize copying
      • Cached state transformations for frequent operations
      • Efficient structural sharing algorithms
  4. Effect Integration for Streaming Side Effects:

    • Tracks side effects in streaming operations
    • Implements effect composition for complex operations
    • Creates testable effect handlers for streaming behavior
    • Provides effect monitoring and analysis tools
    • Performance optimizations:
      • Batched effect processing for improved throughput
      • Selective effect tracking based on context
      • Optimized effect handlers for common patterns

Agent Delegation Feature Libraries ​

  1. Eventsourcing Integration for TemporalStore:

    • Implements event-sourced agent state
    • Creates domain events for agent state transitions
    • Provides snapshotting for performance optimization
    • Implements versioned event repository
    • Performance optimizations:
      • Strategic snapshot intervals for efficient reconstruction
      • Optimized event serialization for storage efficiency
      • Selective event loading for large event streams
  2. Dependency Injector Integration for Agent Management:

    • Creates container registry for different agent types
    • Implements runtime dependency resolution for agents
    • Provides lifecycle management for agent resources
    • Creates factory patterns for dynamic agent creation
    • Performance optimizations:
      • Singleton patterns for shared agent resources
      • Lazy initialization for resource-intensive agents
      • Optimized wire-up for complex dependency graphs
  3. Marshmallow Integration for Agent Schemas:

    • Implements AgentSchema hierarchy for different agent types
    • Creates MessageSchema with validation rules
    • Provides TaskSchema for agent tasks
    • Enables schema inheritance for specialized agents
    • Performance optimizations:
      • Field-level serialization control for large messages
      • Schema specialization with inheritance
      • Optimized validation paths for frequent operations
  4. DiffSync Integration for Agent State Synchronization:

    • Implements bidirectional state synchronization
    • Creates conflict resolution strategies
    • Provides incremental state updates
    • Implements change tracking and reconciliation
    • Performance optimizations:
      • Optimized diffing algorithms for large state
      • Efficient change representation
      • Selective synchronization based on change significance

Knowledge Retrieval Feature Libraries ​

  1. Marshmallow Integration for Document Schemas:

    • Implements complex DocumentSchema with nested structures
    • Creates ChunkSchema with metadata tracking
    • Provides EmbeddingSchema for vector representation
    • Implements schema inheritance for document types
    • Performance optimizations:
      • Partial loading for large documents
      • Cached schema transformations
      • Optimized validation for document batches
  2. AspectLib Integration for Cross-Cutting Concerns:

    • Implements logging aspects for retrieval operations
    • Creates metrics collection across the retrieval pipeline
    • Provides error handling aspects
    • Implements caching aspects for performance
    • Performance optimizations:
      • Selective aspect application based on context
      • Optimized aspect weaving for critical paths
      • Cached woven objects for frequent operations
  3. Pyrsistent Integration for Immutable Documents:

    • Implements immutable document representation
    • Creates efficient document transformation pipeline
    • Provides structural sharing for document parts
    • Implements delta-based document updates
    • Performance optimizations:
      • Optimized structure for document-specific patterns
      • Cache optimizations for document fragments
      • Memory-efficient representation for large documents
  4. Dependency Injector Integration for Retrieval Services:

    • Creates service registry for retrieval components
    • Implements swappable retrieval strategy pattern
    • Provides component lifecycle management
    • Creates factory methods for specialized retrievers
    • Performance optimizations:
      • Resource pooling for database connections
      • Optimized component initialization
      • Service discovery with capability matching

Multi-Provider Routing Feature Libraries ​

  1. Dependency Injector Integration for Provider Registry:

    • Implements provider container with capability discovery
    • Creates factory patterns for provider instantiation
    • Provides dependency resolution for provider requirements
    • Implements provider lifecycle management
    • Performance optimizations:
      • Lazy provider initialization
      • Optimized dependency resolution
      • Cached provider instances
  2. Effect Integration for Provider Operations:

    • Tracks provider side effects explicitly
    • Implements effect isolation between providers
    • Creates testable provider behavior
    • Provides composition of provider effects
    • Performance optimizations:
      • Batched effect handling for common operations
      • Optimized effect handlers for provider-specific patterns
      • Effect caching for expensive operations
  3. Marshmallow Integration for Provider Schemas:

    • Creates ProviderSchema with capability description
    • Implements CapabilitySchema for feature detection
    • Provides RoutingSchema for selection strategies
    • Creates schema-based configuration validation
    • Performance optimizations:
      • Cached schema instances for frequent validation
      • Optimized deserialization for provider responses
      • Schema specialization for different provider types
  4. DiffSync Integration for Provider State:

    • Implements provider state synchronization
    • Creates change tracking for provider operations
    • Provides conflict resolution for multi-provider operations
    • Implements incremental state updates
    • Performance optimizations:
      • Efficient change detection algorithms
      • Optimized reconciliation for provider-specific patterns
      • Selective synchronization based on criticality

Workflow Execution Feature Libraries ​

  1. TaskMap Integration for QuantumPartitioner:

    • Implements dependency-based parallel execution
    • Creates DAG representation for task workflows
    • Provides sophisticated dependency resolution
    • Implements efficient task scheduling
    • Performance optimizations:
      • Adaptive task granularity
      • Work stealing for load balancing
      • Optimized critical path execution
  2. Pyrsistent Integration for Workflow State:

    • Creates immutable workflow definition
    • Implements structural sharing for workflow updates
    • Provides incremental workflow execution state
    • Creates efficient workflow transformations
    • Performance optimizations:
      • Optimized representation for complex workflows
      • Cached workflow state transitions
      • Memory-efficient incremental updates
  3. Blinker Integration for Workflow Events:

    • Implements event-driven workflow execution
    • Creates specialized workflow event types
    • Provides task coordination through events
    • Implements workflow lifecycle events
    • Performance optimizations:
      • Optimized event routing for workflow phases
      • Selective notification for specific workflow states
      • Efficient event propagation patterns
  4. Effect Integration for Workflow Side Effects:

    • Tracks side effects in workflow execution
    • Implements composable effect handlers
    • Creates testable workflow behavior
    • Provides monitoring of workflow effects
    • Performance optimizations:
      • Batched effect processing for task groups
      • Parallelized effect handlers
      • Optimized effect execution strategies

Command CLI Feature Libraries ​

  1. Marshmallow Integration for Command Schemas:

    • Implements CommandSchema with parameter validation
    • Creates ResultSchema for command output
    • Provides schema-based help text generation
    • Creates interactive documentation from schemas
    • Performance optimizations:
      • Cached schema instances for frequent commands
      • Optimized validation for interactive use
      • Incremental schema parsing for large commands
  2. Dependency Injector Integration for CLI Services:

    • Creates service registry for CLI components
    • Implements plugin architecture for commands
    • Provides command dependency resolution
    • Creates factory patterns for command instantiation
    • Performance optimizations:
      • Lazy command initialization
      • On-demand service loading
      • Cached command instances
  3. AspectLib Integration for Command Concerns:

    • Implements logging aspects for all commands
    • Creates permission checking aspects
    • Provides timing aspects for performance tracking
    • Implements retry aspects for resilience
    • Performance optimizations:
      • Selective aspect application based on command
      • Optimized aspect composition for common patterns
      • Efficient aspect weaving for interactive use
  4. Effect Integration for Command Side Effects:

    • Tracks command execution effects
    • Implements effect isolation between commands
    • Creates mock effects for testing
    • Provides effect monitoring for debugging
    • Performance optimizations:
      • Optimized effect handling for interactive use
      • Effect caching for expensive operations
      • Selective effect tracking based on verbosity

NEXT STEPS

Our immediate focus is completing the Streaming Chat feature slice with Blinker integration for the EventBus and Marshmallow schema validation, followed by Agent Delegation with Eventsourcing for the TemporalStore. This will allow us to demonstrate the core capabilities of the system while establishing the architectural patterns and third-party library integration that will be used throughout the implementation.

12. Marshmallow Schema Implementation ​

The schema implementation provides a comprehensive validation, serialization, and documentation layer that runs through all feature slices. The Marshmallow library was chosen for its flexibility, extendability, and compatibility with Python’s type system.

12.1 Core Schema Architecture ​

The schema architecture follows these key design principles:

  1. Inheritance Hierarchy: Schemas use a well-defined inheritance hierarchy to share common validation rules
  2. Protocol Alignment: Each schema aligns with a corresponding protocol definition
  3. Type Integration: Schemas integrate with Python’s typing system for IDE assistance
  4. Version Management: All schemas include versioning capabilities for evolution
  5. Composition Over Complexity: Complex schemas are built through composition of simpler ones

12.2 Schema Categories and Implementation ​

CategoryBase ClassDescriptionKey Implementations
Core SchemasBaseSchemaFoundation for all schemasVersionedSchema, PolymorphicSchema, RegistrableSchema
Protocol SchemasProtocolSchemaSchema for protocol validationBufferProtocolSchema, EventBusProtocolSchema, StateContainerProtocolSchema
Data Structure SchemasDataSchemaSchema for data validationTokenSchema, EventSchema, StateSchema, MessageSchema
Configuration SchemasConfigSchemaSchema for configuration validationBufferConfigSchema, EventBusConfigSchema, ProviderConfigSchema
Meta SchemasMetaSchemaSchema for metadata validationSchemaVersionSchema, SchemaRegistrySchema, SchemaDocumentationSchema

12.3 Schema Implementation by Feature Slice ​

Each feature slice implements comprehensive Marshmallow schemas for validation and serialization:

  • Streaming Chat: StreamingResponseSchema, TokenSchema, EventSchema with timestamp validation and performance metrics
  • Agent Delegation: MessageSchema, AgentSchema, TaskSchema with correlation tracking and state management
  • Knowledge Retrieval: DocumentSchema, ChunkSchema, EmbeddingSchema with chunking strategy validation
  • Multi-Provider Routing: ProviderSchema, CapabilitySchema with feature flags and performance characteristics
  • Workflow Execution: WorkflowSchema, TaskSchema with dependency validation and retry strategies
  • Command CLI: CommandSchema, ParameterSchema with permission control and usage examples

See Implementation Guide for implementation details.

12.4 Schema Registry Implementation ​

The Schema Registry provides centralized schema discovery, validation, and version management with these key capabilities:

  • Schema Registration: Automatic discovery and registration of schemas
  • Class Mapping: Direct mapping between Python classes and their schemas
  • Version Migration: Automated migration between schema versions
  • Schema Discovery: Runtime schema lookup by name or class

See Implementation Guide for registry usage patterns.

12.5 Third-Party Library Integration Details ​

The schema implementation integrates with key third-party libraries to provide comprehensive functionality:

LibraryIntegrationFunction
MarshmallowCore Schema Validation- Data validation
- Serialization/deserialization
- Schema composition
- Field-level validation
Marshmallow-DataclassType-to-Schema Conversion- Convert Python dataclasses to schemas
- Type-safe schema creation
- IDE autocompletion support
- Automatic dataclass generation
PyrsistentImmutable Data Structures- Immutable schema data integration
- Thread-safe state representations
- Efficient structural sharing
- Immutable type validation
EffectSide Effect Management- Tracked validation operations
- Testable schema validation
- Controlled serialization effects
- Effect-managed transformation
Dependency InjectorContainer Integration- Schema discovery and registration
- Runtime schema resolution
- Validator dependency injection
- Schema factory components
EventsourcingSchema Evolution- Event-based schema tracking
- Schema migration events
- Versioned schema history
- Temporal schema queries

12.6 Schema Files and Implementation ​

The implementation includes the following key schema files for each feature slice:

Feature SliceSchema FilesKey Capabilities
Core Serviceatlas/core/schema/base.py
atlas/core/schema/version.py
atlas/core/schema/registry.py
atlas/core/schema/factory.py
atlas/core/schema/migration.py
- Base schema classes
- Version tracking
- Schema registry
- Factory utilities
- Migration tools
Streaming Chatatlas/core/schema/buffer.py
atlas/core/schema/event.py
atlas/providers/schema/streaming.py
- Buffer configuration validation
- Event bus message validation
- Streaming response validation
Agent Delegationatlas/agents/schema/agent.py
atlas/agents/schema/message.py
atlas/agents/schema/task.py
- Agent configuration validation
- Message format validation
- Task definition validation
Knowledge Retrievalatlas/knowledge/schema/document.py
atlas/knowledge/schema/chunk.py
atlas/knowledge/schema/embedding.py
- Document structure validation
- Chunk format validation
- Embedding vector validation
Multi-Provider Routingatlas/providers/schema/provider.py
atlas/providers/schema/capability.py
atlas/providers/schema/routing.py
- Provider configuration validation
- Capability definition validation
- Routing rule validation
Workflow Executionatlas/orchestration/schema/workflow.py
atlas/orchestration/schema/task.py
atlas/orchestration/schema/dependency.py
- Workflow structure validation
- Task definition validation
- Dependency constraint validation
Command CLIatlas/cli/schema/command.py
atlas/cli/schema/parameter.py
atlas/cli/schema/result.py
- Command structure validation
- Parameter definition validation
- Result format validation

Released under the MIT License.